L'ordonnée à l'origine
de $T(x)=2(x-1)+3$

$$a \in D_f$$

et $\lim_{x \to a} f(x) = f(a)$

Définition de f continue en a

Pente de la tangente

$$a f(x) = 2x + 1$$

2

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \exists$$

Définition de f dérivable en a pente de la tangente à $f(x) = x^2$ en a = 0

 \mathbf{O}

Ordonnée à l'origine de f(x) = 2x - 1

-1

Pente de la tangente à f(x) = -2x + 1

-2

$$\lim_{x \to 1} \frac{2x - 1 - (2 - 1)}{x - 1}$$

Pente de la tangente à f(x)=2x-1 en a=1

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Pente de la droite tangente à $f(x)=x^2$ en (1;f(1))

$$\frac{f(x)-f(a)}{x-a}$$

Pente de la droite sécante à f passant par (a; f(a)) et (x; f(x))

$$y = f'(a)(x - a) + f(a)$$

Équation de la droite tangente à f en (a;f(a))	L'équation de la droite tangente à $f(x) = 2x - 1$	f(x)= 2x-1	$\lim_{x \to 1} \frac{2x-2}{x-1}$
Pente de la droite tangente à f(x)=2x en x=1	La droite tangente à f(x)=mx+h	La droite f(x) elle-même	Pente de la tangente à f(x)= 3x+1 en a=1
3	L'ordonnée à l'origine de T(x)=3(x-2)+3	-3	L'équation de la droite tangente à f(x)=2x+1 en a=1
T(x) = 2(x-1)+3	La pente de la tangente à f(x)= x² en a=-2	-4	L'équation de la droite tangente à f(x)=2x en a=3
T(x) = 2(x-3)+6	L'équation de la droite tangente à f(x)=3x-3 en a=2	T(x)=3(x-2)+3	1

.