

Si f est dérivable en a et si $f(a) \neq 0$,

alors la fonction $\frac{1}{f}$ est aussi dérivable en a et $\left(\frac{1}{f}\right)'(a) = -\frac{f'(a)}{f^2(a)}$

 $\underline{\operatorname{Si}}\,f$ et g sont deux fonctions dérivables en a et si $g(a)\neq 0$

alors la fonction $\frac{f}{g}$ est aussi dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$

Si f est dérivable en a et si g est dérivable en f(a) alors la fonction $g \circ f$ est dérivable en a et $(g \circ f)'(a) = (g' \circ f)(a) \cdot f'(a)$

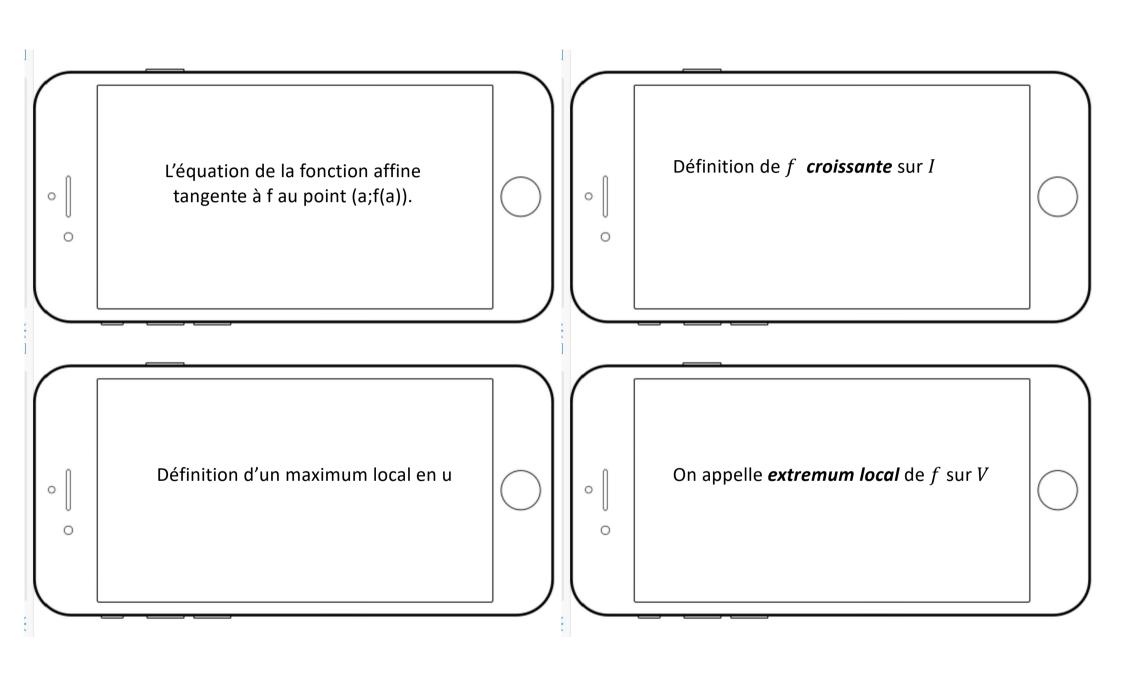
Soit f une fonction définie sur un intervalle $I \subset \mathbb{R}$ et soit $a \in I$ On dit que f est dérivable en a si $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe et est un nombre réel.

La signification "géométrique" de la dérivée de f en a: f'(a) représente la **pente de la droite tangente à f au point (a; f(a)).**

Continuité

On note f une fonction définie dans un intervalle ouvert contenant a.

La fonction f est continue en a si $\lim_{x\to a} f(x) = f(a)$



Définitions :

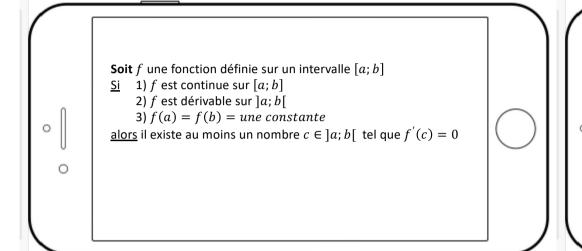
Soit f une fonction définie sur un intervalle I. f est **croissante** sur I si $\forall x_1, x_2 \in I$ avec $x_1 < x_2$ alors $f(x_1) \leq f(x_2)$

L'équation de la droite tangente à f au point

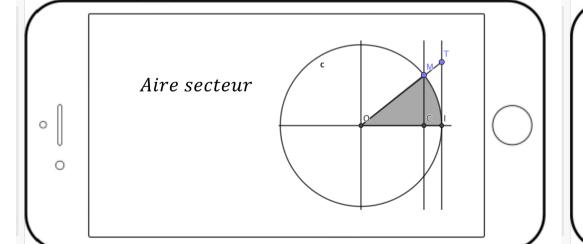
$$(a; f(a))$$
:
 $y = f'(a) \cdot (x - a) + f(a)$

un maximum local de f sur V ou un minimum local de f sur V.

s'il existe un voisinage V de u où $f(x) \le f(u) \forall x \in V$



Soit f une fonction définie sur un intervalle [a;b] \underline{Si} 1) f est continue sur [a;b] 2) f est dérivable sur]a;b[alors il existe au moins un nombre $c \in]a;b[$ tel que $f'(c) = \frac{f(b)-f(a)}{b-a}$



Qu'est-ce qui est vrai ?

A:

Soit f une fonction définie au voisinage de a. Si f est dérivable en a alors f est continue en a.

B:

Soit f une fonction définie au voisinage de a. Si f est continue en a alors f est dérivable en a

0

Théorème de Lagrange (Théorème des Accroissements Finis : TAF)

Théorème de Rolle

A:

Soit f une fonction définie au voisinage de a. Si f est dérivable en a alors f est continue en a

$$\frac{Aire\ secteur}{\pi \cdot r^2} = \frac{x}{2\pi}$$
comparaison d'aires
$$\frac{x}{2\pi}$$

$$\Rightarrow Aire\ secteur = \frac{x}{2\pi} \cdot \pi \cdot r^2, avec\ r = 1$$