f((x;y)) = (2x - y;x)	$Im(f)=\mathbb{R}^2$	$Ker(f) = \{(0; 0)\}$	$\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$
f((x;y)) = (x-y;0)	$Im(f) = \{(s; 0), s \in \mathbb{R}\}$	$Ker(f) = \{(t,t), t \in \mathbb{R}\}$	$\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$
f((x;y)) = (x;y;x-y)	$Im(f) = \{t(1;0;1) + s(0;1;-1), t, s \in \mathbb{R}\}$	$Ker(f) = \{(0; 0)\}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$
f((x;y;z))=(0;x;2x)	$Im(f) = \{(0;t;2t), t \in \mathbb{R}\}$	$Ker(f) = \{(0; t; s), t, s \in \mathbb{R}\}$	$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

f((x;y;z)) = (x-z;2z-2x)	$Im(f) = \{(t; -2t), t \in \mathbb{R}\}$	$Ker(f) = \{(t; s; t), t, s \in \mathbb{R}\},$	$\begin{pmatrix} 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$
f((x;y)) = (x-y;y-x)	$Im(f) = \{(t; -t), t \in \mathbb{R}\}$	$Ker(f) = \{(t;t), t \in \mathbb{R}\}$	$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
f((x;y)) $= (-3x - 9y; x + 3y)$	$Im(f) = \{(-3\lambda; \lambda) \lambda \in \mathbb{R}\}$	$Ker(f) = \{(-3\lambda; \lambda) \lambda \in \mathbb{R}\}$	$\begin{pmatrix} -3 & -9 \\ 1 & 3 \end{pmatrix}$
f((x;y)) = (0;x-3y)	$Ker(f) = \{(3\lambda; \lambda) \lambda \in \mathbb{R}\}$	$Im(f) = \{(0; \lambda) \lambda \in \mathbb{R}\}$	$\begin{pmatrix} 0 & 0 \\ 1 & -3 \end{pmatrix}$

Règles du jeu:

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est iuste!

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est juste!

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est iuste!

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est iuste!

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est juste!

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est juste !

Règles du jeu:

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est juste !

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est juste !

Règles du jeu :

Ranger par application linéaire : son noyau, son image et sa matrice associée

Quand le classement est terminé, vérifier en retournant les cartes.

Si les couleurs sont les mêmes que celle de f(x), c'est juste !