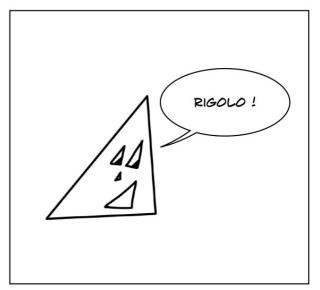
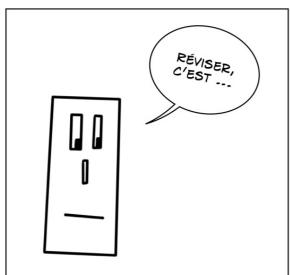
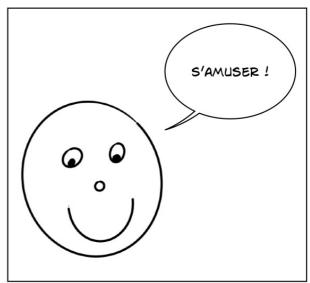
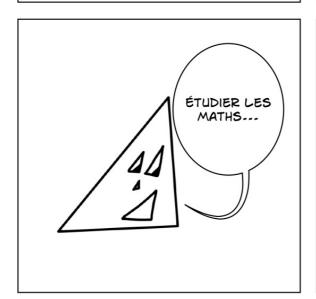
Démonstration : Dérivée du sinus

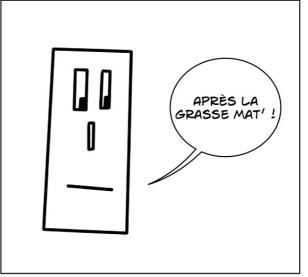
$\operatorname{Si} f(x) = \sin(x)$
Alors $f'(x) = \cos(x) \forall x \in \mathbb{R}$
sin'(a) =
$\lim_{x \to a} \frac{\sin(x) - \sin(a)}{x - a} =$
$\lim_{x \to a} \frac{2\cos\left(\frac{x+a}{2}\right) \cdot \sin\left(\frac{x-a}{2}\right)}{x-a}$
$\lim_{x \to a} \cos\left(\frac{x+a}{2}\right) \cdot \lim_{x \to a} \frac{2 \cdot \sin\left(\frac{x-a}{2}\right)}{x-a}$
$\cos\left(\frac{a+a}{2}\right) \cdot \lim_{x \to a} \frac{\sin\left(\frac{x-a}{2}\right)}{\frac{x-a}{2}}$
$\cos\left(\frac{a+a}{2}\right) \cdot \lim_{y \to 0} \frac{\sin(y)}{y}$
$\cos\left(\frac{2a}{2}\right)\cdot 1$
$\cos(a) \cdot 1$
$\cos(a)$











Démonstration : Dérivée du sinus

Hypothèse :
Conclusion :
Preuve : Dérivée en a
Définition de la dérivée
Appliquer une formule de la CRM $\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$
Utiliser la propriété : la limite d'un produit est égale au produit des limites
Cosinus est continue donc la limite est égale à l'image et algèbre.
Changement de variable $y = \frac{x-a}{2}$
Appliquer le théorème : $\lim_{x\to 0} \frac{\sin(x)}{x} = \dots$
$\frac{2a}{2} = a$
Arrivé à la conclusion !