Analyse combinatoire Série 1

Ne pas écrire sur les énoncés! Rédigez vos réponses sur des feuilles quadrillées

Exercice 1:

Alice et Bérénice disputent un match de badminton. La première à gagner deux parties de suite ou trois parties en tout gagne le match.

De combien de manières différentes ce match peut-il se dérouler ?

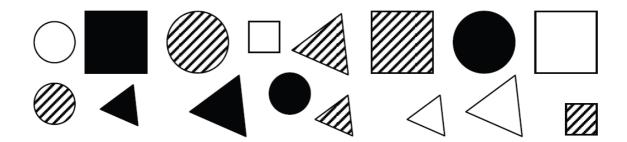
Notation: A signifie "Alice gagne" et B signifie "Bérénice gagne".

Exercice 2:

Pierre a le temps de jouer à la roulette cinq parties tout au plus. A chaque partie, il gagne ou il perd 1 franc. Il commence à jouer avec un franc et arrête avant la cinquième partie s'il a perdu tout son argent ou s'il a gagné trois francs (et donc qu'il possède 4 francs).

Déterminer le nombre de cheminements différents que le jeu peut prendre jusqu'à son terme.

Exercice 3:


Dans une urne qui contient 5 boules numérotées de 1 à 5, Ariel tire 3 boules sans remises. Combien y a-t-il de tirages possibles ? Et avec remises des boules ?

Exercice 4:

On lance une pièce de monnaie et on s'arrête dès qu'on a obtenu trois fois le même côté. Construire un arbre représentant cette situation.

Exercice 5:

Observer les figures ci-dessous. Faire une liste des critères qui les différencient et décrire à l'aide d'un arbre toutes les possibilités. Quelles figures manquent sur le dessin ?

JDM- Collège Voltaire 1

Exercice 6:

Calculer: 2!, 3!, 4!, 5!, 6!, 7!, 8!, 9!, 10!, 11! et 12!

Exercice 7:

Simplifier les factions au maximum :

$$\frac{13!}{11!}$$
, $\frac{7!}{10!}$, $\frac{100!}{98!}$, $\frac{127!}{4! \cdot 123!}$, $\frac{136!}{133! \cdot 3!}$, $\frac{199!}{192! \cdot 7!}$, $\frac{134!}{11! \cdot 123!}$

Exercice 8:

Calculer:
$$\frac{n!}{(n-2)!}$$
, $\frac{(n+2)!}{n!}$, $\frac{(n+1)!}{(n-1)!}$

Exercice 9:

Les affirmations ci-dessous sont-elles justes ou fausses?

a)
$$20! = 4! \cdot 5!$$

d)
$$(m+n)! = m! + n!$$

g)
$$(2n)! = 2! \cdot n!$$

b)
$$5! > 2^5$$

e)
$$k! = k \cdot (k - 1)!$$

c)
$$n! > 2^n$$
, $si n > 3$

f)
$$(m \cdot n)! = m! \cdot n!$$

Solutions:

Ex 1: 10 manières possibles: AA, ABB, ABAA, ABABA, ABABB, BB, BAA,BABB, BABAA, BABAB

Ex 2: 11 manières différentes

Ex 3: $5 \cdot 4 \cdot 3 = 60$ possibilités sans remise. $5 \cdot 5 \cdot 5 = 125$ Possibilités avec remise.

Ex 4: 20 possibilités

Ex 5: critères: (carré, rond, triangle) & (petit, grand), (noir, blanc, hachuré). Il manque le petit carré noir et le grand rond blanc

Ex 6:
$$2! = 2$$
, $3! = 6$, $4! = 24$, $5! = 120$, $6! = 720$, $7! = 5040$, $8! = 40320$, $9! = 362880$, $10! = 3628800$, $11! = 39916800$, $12! = 479001600$

$$\begin{aligned} \textbf{Ex 7:} & \frac{13!}{11!} = 156 \text{ ; } \frac{7!}{10!} = \frac{1}{720} \text{ , } \frac{100!}{98!} = 9900, \\ & \frac{127!}{4! \cdot 123!} = 10334625 \text{ , } \frac{136!}{133! \cdot 3!} = 410040 \text{ , } \\ & \frac{199!}{192! \cdot 7!} = 199 \cdot 33 \cdot 197 \cdot 7 \cdot 13 \cdot 97 \cdot 193 \cong 2,2039 \cdot 10^{12} \text{ , } \frac{134!}{11! \cdot 123!} \cong 4,1105 \cdot 10^{15} \end{aligned}$$

Ex 8:
$$\frac{n!}{(n-2)!} = n^2 - n$$
, $\frac{(n+2)!}{n!} = n^2 + 3n + 2$, $\frac{(n+1)!}{(n-1)!} = n^2 + n$

Ex 9: a) faux b) vrai c) vrai d) faux e) vrai f) faux g) faux