Analyse Série 3

Exercice 1: Soient les fonctions suivantes:

$$f : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2x + 1 \end{cases}$$

$$g: \begin{cases} \mathbb{R}_{-}^* \longrightarrow \mathbb{R}_{-}^* \\ x \mapsto \frac{1}{x} \end{cases}$$

$$h: \begin{cases} \mathbb{R}_- \to \mathbb{R}_+ \\ x \mapsto x^2 \end{cases}$$

- 1) Calculer $f \circ g$; $h \circ g$ et $f \circ h$
- 2) Calculer les réciproques des bijections f; g et h
- 3) Calculer $f \circ^r f$ et $g \circ^r g$ puis commenter ces résultats
- 4) Calculer $f \circ (h \circ g)$ et $(f \circ h) \circ g$.

Exercice 2: Notons

$$T_a(x) = x + a$$

$$H_b(x) = b \cdot x$$

$$C(x) = x^2$$

Ces trois fonctions sont définies de $\mathbb R$ vers $\mathbb R$

- 1) Calculer $H_{1/2} \circ C \circ T_{-2}$; $H_3 \circ C \circ C \circ T_1$ et $T_{-4} \circ C \circ C$
- 2) Les fonctions suivantes ont été composées à l'aide des fonctions T_a ; H_b et C. Retrouver ces compositions.

$$f(x) = 3(x-2)^2 + 1$$

$$h(x) = 2(x^2 - 3)^2 + 1$$

$$g(x) = \frac{x^2 + 2}{3}$$

- 3) Représenter sur un même graphique :
 - a) C; $T_2 \circ C$ et $C \circ T_2$
 - b) $C; T_{-3} \circ C \text{ et } C \circ T_{-3}$

Exercice 3: Notons:

$$T_a(x) = x + a$$

$$V(x) = |x|$$

$$R(x) = \sqrt{x}$$

$$C(x) = x^2$$

$$H_b(x) = b \cdot x$$

$$J(x) = \frac{1}{x}$$

1) Effectuer les compositions suivantes :

$$f(x) = H_3 \circ R \circ T_{-2} \circ J \circ H_5 \circ C$$

$$g(x) = H_3 \circ J \circ R \circ V \circ T_{-4} \circ H_2 \circ C$$

 $g(x)=H_3\circ J\circ R\circ V\circ T_{-4}\circ H_2\circ C$ 2) Décomposer les fonctions données :

$$h(x) = \sqrt{\frac{2x-1}{3}}$$

$$i(x) = 2(x^2 - 3)^2 + 1$$

$$j(x) = \sqrt{4 - x^2}$$

Solutions Analyse Série 3:

Ex 1:

1)
$$(f \circ g)(x) = \frac{-2+x}{x}$$
; $(h \circ g)(x) = \frac{1}{x^2}$ et $(f \circ h)(x) = -2x^2 + 1$

2)
$$rf(x) = -\frac{1}{2}x + \frac{1}{2}; \quad rg(x) = \frac{1}{x}et \quad rh(x) = -\sqrt{x}$$

3)
$$(f \circ^r f)(x) = x$$
 et $(g \circ^r g)(x) = x$ on retrouve l'identité

4)
$$[f \circ (h \circ g)](x) = -\frac{2}{x^2} + 1$$
 et $[(f \circ h) \circ g](x) = -\frac{2}{x^2} + 1$ composition associative

Ex 2:

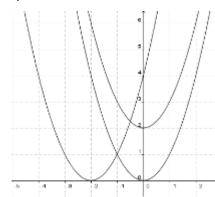
$$T_a(x) = x + a \text{ donc } T_1(x) = x + 1 \text{et } T_{-4}(x) = x - 4, \text{ etc.}$$

$$H_b(x) = b \cdot x \text{ donc } H_3(x) = 3x; H_2(x) = 2x, etc.$$

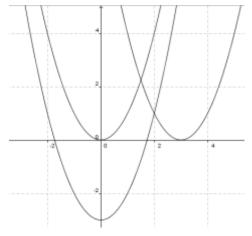
$$C(x) = x^2$$

1)
$$\left(H_{\frac{1}{2}} \circ C \circ T_{-2}\right)(x) = \frac{1}{2}(x-2)^2;$$
 $(H_3 \circ C \circ C \circ T_1)(x) = 3(x+1)^4$
et $(T_{-4} \circ C \circ C)(x) = x^4 - 4$

2)
$$f(x) = (T_1 \circ H_3 \circ C \circ T_{-2})(x)$$
; $g(x) = (H_{\frac{1}{3}} \circ T_2 \circ C)(x)$; $h(x) = (T_1 \circ H_2 \circ C \circ T_{-3} \circ C)(x)$



h



Ex 3:

1)
$$f(x) = 3\sqrt{\frac{1}{5x^2} - 2}$$
 $g(x) = \frac{3}{\sqrt{|2x^2 - 4|}}$

2)
$$h(x) = \sqrt{\frac{1}{3}(2x-1)} = \left(R \circ H_{\frac{1}{3}} \circ T_{-1} \circ H_2\right)(x)$$

$$i(x) = (T_1 \circ H_2 \circ C \circ T_{-3} \circ C)(x)$$

$$j(x) = \sqrt{-x^2 + 4} = (R \circ T_4 \circ H_{-1} \circ C)(x)$$