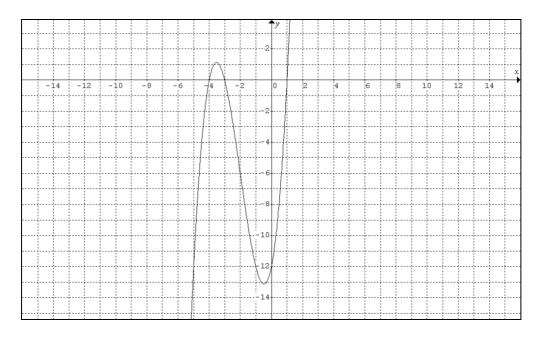

Polynômes Série 4

Ne pas écrire sur l'énoncé!

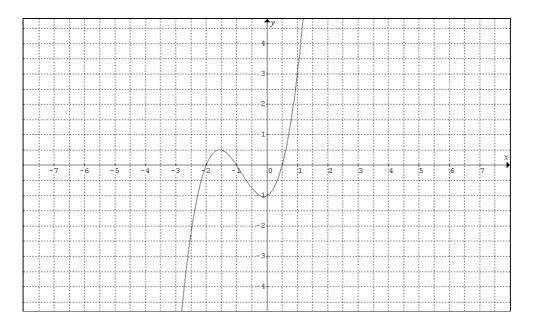
Exercice 1:

- a) Etablir le tableau de signes de $f(x) = x^2 + x 6$
- b) Parmi les représentations graphiques ci-dessous, quelle est celle de f(x) ?


1.

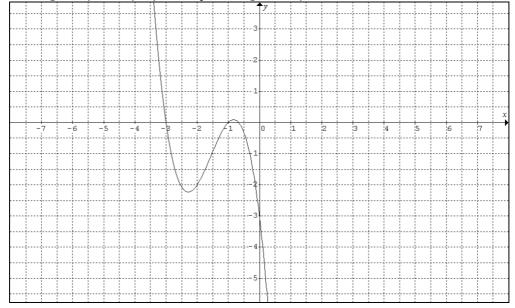
Exercice 2:

Soit
$$g(x) = x^3 + 6x^2 + 5x - 12$$


Est-ce que le graphe ci-dessous pourrait être celui du polynôme g(x) ?

Justifiez à l'aide des zéros du polynôme g, du tableau des signes de g et de g(0).

2ma1 PS4


Exercice 3 : Soit la représentation graphique du polynôme p :

- a) Trouvez les zéros du polynôme p à l'aide de sa représentation graphique.
- b) Est-ce que le polynôme p est divisible par x + 1? et par x 1?
- c) Peut-on factoriser le polynôme par x + 2?
- d) Proposez un polynôme de degré 3 sous forme factorisée à l'aide des zéros de p.
- e) Vérifiez que p(0) du graphe et de l'expression algébrique soit le même.
- f) Faites le tableau des signes de *p* Avec l'expression trouvée au point e) et vérifiez la cohérence avec le graphe.

Exercice 4:

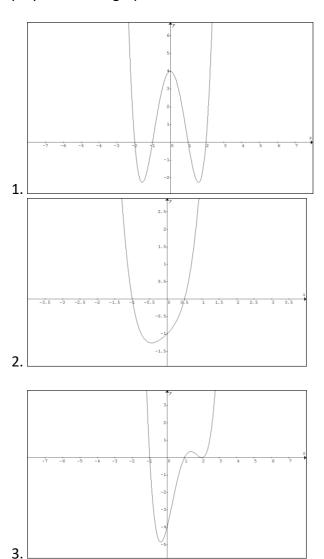
En sachant que p(0) = -3 et que le polynôme p est divisible par 3x + 2, déterminez l'expression algébrique du polynôme p de degré 3 représenté ci-dessous :

2ma1

PS4

Exercice 5:

a) Faites les tableaux des signes des polynômes suivants :


$$p_1(x) = (x^2 + 1)(2x - 1)(x + 1)$$

$$p_2(x) = (x^2 + 1)(-2x + 1)(x + 1)$$

$$p_3(x) = x^4 - 5x^2 + 4$$

$$p_4(x) = x^4 - 4x^3 + 3x^2 + 4x - 4$$

b) Trois polynômes parmi les polynômes p_1, p_2, p_3 et p_4 sont représentés graphiquement ci-dessous. Faites correspondre un polynôme à chaque représentation graphique et expliquer en montrant les points communs entre le polynôme et le graphe.

c) Parmi les polynômes p_1, p_2, p_3 et p_4 , lequel des polynômes n'est pas représenté graphiquement ci-dessus ? Esquissez le graphe de ce polynôme.

2ma1

Corrigé PS4:

Exercice 1:

b) le 1.

Exercice 2: Oui

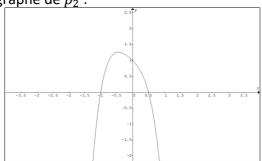
Exercice 3:
$$p(x) = (x + 2)(x + 1)(x - \frac{1}{2})$$

Exercice 4:
$$p(x) = -\frac{1}{2}(x+3)(x+1)(3x+2)$$

Exercice 5:

a)

ω,						
	×	-∞	-1		0.5	+∞
	x²+1	x²+1 +		+	+	+
	2x-1	2×-1 -		-	0	+
	×+1	-	0	+	+	+
	(x ² +1) (2x-1) (x+1)	+	0	-	0	+
		1		1	'	1
	×	- ∞	-1		0.5	+∞
	x ² +1	+	+	+	+	+
	-2×+1	+	+	+	0	-
	v. 1					


x*+1	+	+	+	+	+	
-2×+1	+	+	+	0	-	
x+1	-	0	+	+	+	
(x ² +1) (-2x+1) (x+1)	-	0	+	0	-	
x -	∞ -2		-1 1		2	+∞

 ×	-∞	-2		-1		1		2	+∞
×-1	-	-	-	-	-	0	+	+	+
×+1	-	•	ı	0	+	+	+	+	+
x-2	-	-	-	-	-	-	-	0	+
x+2	-	0	+	+	+	+	+	+	+
C(x)	+	0	-	0	+	0	-	0	+

×	-∞		-1		1		2	+∞
x-1		-	-	-	0	+	+	+
×+1		-	0	+	+	+	+	+
(x-2) ²		+	+	+	+	+	0	+
D(x)		+	0	-	0	+	0	+

b) Le graphe 1 correspond à p_3 , le graphe 2 correspond à p_1 et le graphe 3 correspond à p_4 .

c) Le graphe de p_2 :

