1MA1 AIS1

Algèbre, Série 1

S'il n'y a pas d'autres instructions dans un exercice, toujours donner la réponse sous forme exacte (pas d'arrondi), réduite. Ne pas écrire sur l'énoncé.

Exercice 1:

Si la lettre n représente un nombre entier $(n \in \mathbb{Z})$, comment peut-on représenter :

- a) Cet entier augmenté de 3?
- b) Le triple de cet entier?
- c) La somme de cet entier et de son successeur?
- d) Le produit de cet entier et de son prédécesseur ?

Exercice 2:

n représente un nombre entier

- a) Ecrire la somme de cet entier, de son prédécesseur et de son successeur
- b) Ecrire un multiple de 4
- c) Ecrire un nombre pair
- d) Ecrire un nombre impair
- e) Ecrire la somme de deux multiples de 7 consécutifs.

Exercice 3:

En utilisant la lettre n pour désigner un nombre entier :

- a) Ecrire la somme de cinq entiers consécutifs
- b) Montrer que cette somme est forcément un multiple de 5

Exercice 4:

Est-il possible que la somme de quatre entiers consécutifs soit un multiple de 4?

(inspirez-vous des exercices précédents pour justifier votre réponse)

Exercice 5:

Si a désigne un nombre entier, comment peut-on écrire :

- a) Le carré du successeur de a ?
- b) Le successeur de la somme du carré et du double de a ?
- c) Quelle est la différence entre ces deux nombres?

1ma1 AIS1

Exercice 6:

Trouver, si possible, deux nombres qui sont des éléments de

a) \mathbb{R} mais pas de \mathbb{Q}

b) \mathbb{Z} mais pas de \mathbb{N}

c) \mathbb{N} mais pas de \mathbb{Z} .

Exercice 7: Calculer.

a)
$$-3.4 + (-4.7) =$$

c)
$$54 - 63 - 11 + 73 - 108 =$$

b)
$$13.8 - 24.5 =$$

d)
$$-4.16 + 0.97 + 10.16 - 1 =$$

Exercice 8: Calculer.

e)
$$(-6)(+7) =$$

f)
$$(-156) \div (-8) =$$

g)
$$(-1) \cdot (+1) \cdot (+1) \cdot (-1) \div ((-1) \cdot (+1)) =$$

h)
$$(-2) \cdot (+2) \cdot (+2) \cdot (-2) \cdot ((-2) \cdot (+2)) =$$

Exercice 9: Calculer.

i)
$$17.4 - (7.4 - 12.1) =$$

j)
$$-56 + 7.12 =$$

k)
$$(-4.5 - 9.9): (-5.8 + 7) =$$

1)
$$4.73 \cdot 2 - 6 \cdot (2 + 2.73) - (-14.8 + 20.8) \cdot 4.73 =$$

Exercice 10 : Déterminer la décomposition en facteurs premiers des nombres donnés. (Dans l'ordre croissant)

Exemple: $60 = 2^2 \cdot 3 \cdot 5$

Exercice 11: Déterminer le pgdc (plus grand diviseur commun) et le ppmc (plus petit multiple commun) des nombres donnés.

(La réponse peut être laissée sous forme de facteurs premiers, ordonnés comme dans l'exercice précédent ou en multipliant les facteurs.)

Exemple: $pgdc(24;60) = 2^2 \cdot 3 = 12$ et $ppmc(24;60) = 2^3 \cdot 3 \cdot 5 = 120$

a) 225 et 105

c) 12, 18 et 21

b) 345 et 219

d) 345, 688 et 8190

Exercice 12:

Christelle et Cyril font des tours de stade. Christelle fait un tour en 54 minutes et Cyril en 72 minutes. Quel sera le temps minimal jusqu'à ce qu'ils se croisent de nouveau sur la ligne de départ s'ils commencent la course au même moment ?

Exercice 13: Calculer.

a)
$$\frac{7}{240} - \frac{13}{360} + \frac{17}{300} =$$
 d) $\left(\frac{6}{17} - \frac{9}{2}\right) \cdot \frac{34}{3} =$

d)
$$\left(\frac{6}{17} - \frac{9}{2}\right) \cdot \frac{34}{3} =$$

f)
$$\frac{\left(-\frac{4}{7} + \frac{3}{5}\right)^2 \cdot \frac{2}{3}}{\left(-\frac{4}{7}\right)^2 \cdot \left(\frac{3}{5} + \frac{2}{3}\right)} =$$

b)
$$\frac{252}{752} \cdot \frac{94}{49} =$$

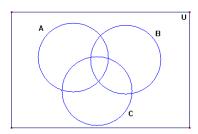
e)
$$\left(\frac{6}{17} - \frac{9}{2}\right) : \frac{34}{3} =$$

c)
$$\frac{7}{5}$$
: $\frac{35}{25}$ =

Exercice 14: Transformer en fractions:

c)
$$1.\overline{21}$$

b)
$$0.\overline{7}$$


d) 4.
$$\overline{457}$$

f)
$$-3.1\overline{47}$$

Exercice 15

A l'aide d'un diagramme de Venn (cf. modèle ci-contre), représenter

les ensembles suivants. (Un diagramme par réponse)

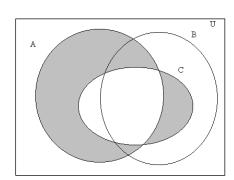
9)
$$A \cap \overline{C}$$

4) (A∩B)∪C

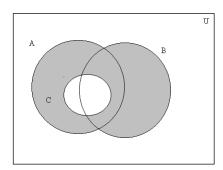
8)
$$\overline{A} \cap \overline{B}$$

Exercice 16

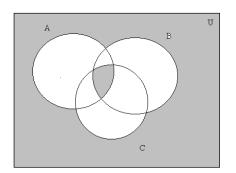
Réduire les écritures suivantes. (A, B et C sont des ensembles non-vides).

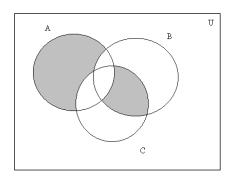

Il s'agit de trouver une écriture plus simple pour décrire les ensembles donnés.

Là aussi, un diagramme de Venn peut être utile.


Exercice 17

Décrire les ensembles ombrés à l'aide des symboles usuels.


a)


b)

c)

d)

Exercice 18: On considère trois sous ensembles de l'univers $U = \{a; b; c; d; e\}$:

$$A = \{a \; ; \; b \; ; \; c\}$$

$$B = \{a : d\}$$

$$B = \{a; d\}$$
 $C = \{a; b; d\}$

Enumérer les éléments de :

1) $A \cap B \cap C$

3) $B \setminus (A \cap B)$

5) $B\setminus (A\mathcal{L})$

2) *A\B*

4) $(A \cap B) \setminus C$

6) $U \setminus (A \cup B \cup C)$

Un diagramme de Venn peut être utile.

Exercice 19

Compléter par l'un des symboles \in , $\not\in$, \subset ou $\not\subset$ de sorte à obtenir une affirmation cohérente et vraie.

Rappel:

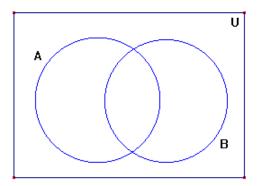
∈ signifie "est un élément de"

- **1**) 0.....ℝ
- 2) {0}.....ℝ
- 3) {1;3}.....№
- 4) 3 ℕ

- 5) π ℚ
- 6) $\{0; 1\}....\mathbb{Z}^*$
- 7) $\{1; 3; 7\}.....\mathbb{N}^*$
- 8) $\{\sqrt{3}; 4; 5\}....\mathbb{R}$

- 9) {a}.....{a;b;c}
- 10) {b}.....{a; c}
- **11**) {*b*}.....{a; b}
- 12) c....{a; b}

1ma1 AIS1


Exercice 20

On considère le référentiel $U = \{1; 2; 3; 4; 5; 6; 7\}$ et les ensembles A et B.

On sait que :

- a) $A \cup B = \{1; 3; 5; 7\}$
- b) $B \setminus A = \emptyset$
- c) $A \setminus B = \{3\}$

Placer tous les éléments de $\,U\,$ dans le diagramme ci-dessous.

Exercice 21

Trouver les ensembles A et B sachant que l'on a:

- $A \cup B = \{a; b; c; d; e\}$
- $A \cap B = \{b ; c ; d\}$
- a ∉ B\A
- e ∉ A\B

Exercice 22

$$A = [-4; 2[$$

$$C =]1; \infty[$$

$$B = \{x \mid x \in \mathbb{R} \text{ et } -1 \le x < 4\}$$

$$D = \{x \mid x \in \mathbb{R} \text{ et } x \leq 2\}$$

- 1) Représenter ces quatre intervalles sur une droite graduée.
- 2) Effectuer les opérations suivantes.

$$A \cap C =$$

$$C \cup D =$$

$$A \cap B \cap C =$$

$$(A \cup C) \setminus B =$$

$$A \cap \mathbb{N} =$$

Exercice 23

Ecrire différemment les ensembles suivants.

1)
$$\{x | x \in \mathbb{N} \text{ et } x < 5\}$$

2)
$$\{x | x \in \mathbb{R} \text{ et } 0 \le x < \frac{3}{4} \}$$

3)
$$\{x | x \in \mathbb{N} \text{ } \underline{\text{et}} \text{ } x \leq -10\}$$

4)
$$\{x | x \in \mathbb{R} \ \underline{et} - 3 \le x \le -1\}$$

7)
$$\{-2; -1; 0; 1\}$$

Exercice 24

Compléter, si possible, de sorte que l'égalité soit vraie.

1)
$$]-10;.....] \cap].....;....[=]-2;4]$$

2) [0;.....]
$$\cup$$
 [.....; 5] =[-1; 10]

3)]....;
$$2[\cap]$$
....; $3] = \emptyset$

4)
$$[-2; 2] \cap [....;[= [0;]$$

Exercice 25

Trouver, si possible, deux intervalles A et B de sorte que $A \cup B = [0; 3]$ et $A \cap B = [1; 3/2]$.

Voir livre CRM Notions élémentaires exercices §1.5

Solutions Algèbre Série 1

Ex 1: a)
$$n + 3$$

c)
$$n + n + 1 = 2n + 3$$

b)
$$3n$$
 c) $n + n + 1 = 2n + 1$ d) $n(n - 1) = n^2 - n$

Ex 2: a)
$$n + n - 1 + n + 1 = 3n$$

e)
$$7n + 7(n + 1) = 7n + 7n + 7 = 14n + 7$$

Ex 3:

a)
$$n + n + 1 + n + 2 + n + 3 + n + 4 = 5n + 10$$

b)
$$5n + 10 = 5(n + 2) = multiple de 5$$

Ex 4:
$$n + n + 1 + n + 2 + n + 3 = 4n + 6 \neq 4(...)$$

Faux, on ne peut pas mettre 4 en évidence

Ex 5: a)
$$(a+1)^2$$
 b) a^2+1+2a c) $(a+1)^2-(a^2+1+2a)=0$

Ex 6: a) π b) -1 c) impossible

Ex 7: a)
$$-8.1$$
 b) -10.7 c) -55 d) 5.97

Ex 8: e)
$$-42$$
 f) 19,5 g) -1 h) -4

Ex 9: i) 22,1 j)
$$-48,88$$
 k) -12 l) $-47,3$

Ex 10:

a)
$$345 = 3 \cdot 5 \cdot 23$$
 b) $219 = 3 \cdot 73$ c) $43 = 43$ d) $1024 = 2^{10}$ e) $688 = 2^4 \cdot 43$

b)
$$219 = 3 \cdot 73$$

c)
$$43 = 43$$

d)
$$1024 = 2^{10}$$

e)
$$688 = 2^4 \cdot 43$$

f)
$$8190 = 2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$$

Ex 11:

a)
$$ppcm(225;105) = 3^2 \cdot 5^2 \cdot 7;$$

$$pgcd(225,105) = 3 \cdot 5$$

b)
$$ppcm(345; 219) = 3 \cdot 5 \cdot 23 \cdot 73;$$

$$pgcd(345;219) = 3$$

c)
$$ppcm(12; 18) = 2^2 \cdot 3^2 \cdot 7;$$

$$pgcd(12;18) = 3$$

d)
$$ppcm(345; 688; 8190) = 2^4 \cdot 2^3 \cdot 5 \cdot 7 \cdot 13 \cdot 23 \cdot 43;$$

$$pgcd(345;688;8190) = 1$$

Ex 12:
$$ppcm(54;72) = 2^3 \cdot 3^3 = 216 \text{ minutes}$$

Ex 13: a)
$$\frac{179}{3000}$$
 b) $9/14$ c) 1 d) -47 e) $-423/1156$ f) $1/760$

1ma1 AIS1

Ex 14: a) 7/20 b) 7/9 c) 40/33 d) 4453/999 e) 1048/333 f) -1558/495

Ex 16: 1) \emptyset 2) $B \setminus A$ 3) B 4) \emptyset

Ex 17: a) $(A \setminus C) \cup (C \setminus A)$ b) $(A \cup B) \setminus C$ c) $(A \cap B \cap C) \cup \overline{A \cup B \cup C}$ d) $[A \setminus (B \cup C)] \cup [(B \cap C) \setminus A]$

Ex 18: 1) $\{a\}$ 2) $\{b;c\}$ 3) $\{d\}$ 4) \emptyset 5) \emptyset 6) $\{e\}$

Ex 19: 1) ∈ 2)
$$\subset$$
 3) \subset 4) ∈ 5) \notin 6) 7) \subset 8) \subset 9) \subset 10) 11) \subset 12) \notin

Ex 21: $A = \{a; b; c; d\}$ $B = \{b; c; d; e\}$

Ex 22:
$$A \cap C =]1; 2[$$
 $A \cap B \cap C =]1; 2[$ $A \setminus B = [-4; -1[$ $A \cap \mathbb{N} = \{0; 1\}$ $C \cup D =]-\infty; \infty[= \mathbb{R}$ $D \setminus A =]-\infty; -4[\cup \{2\}$ $(A \cup C) \setminus B = [-4; -1[\cup [4; +\infty[$ $(C \setminus D) \cap B =]2; 4[$ $(C \setminus D) \cup A = [-4; +\infty[\setminus \{2\}$

Ex 23: 1) $\{0; 1; 2; 3; 4\}$ 2) $[0; \frac{3}{4}[$ 3) \emptyset 4) [-3; -1] 5) $\{x | x \in \mathbb{N}; x \ge 12\}$ 6) $] - \infty; \infty[$ 7) $\{x | x \in \mathbb{Z}, -2 \le x \le 1\}$

Ex 24: 1)
$$] - 10; 4] \cap] - 2; 6[=] - 2; 4] 2) $[0; 10] \cup [-1; 5] = [-1; 10]$
3) $] - 1; 2[\cup]2; 3] = \emptyset$ 4) $[-2; 2] \cap [0,3[=[0; 2] 5) [-2; 3] \setminus [0; 3] = [-2; 0[$$$

Ex 25:
$$A =]0; \frac{3}{2}]$$
 $B = [1; 3]$

Pour entrainer les intervalles : Notions élémentaires p.9 en 2 & p. 10 ex 7 à 9

Pour entrainer les ensembles : Notions élémentaires p.9-10 ex 1 & 3 à 6

Rappels notation des ensembles, des intervalles, des opérations sur les ensembles : p.2-3 N.E.