Étude de fonction rationnelle 3Ma1

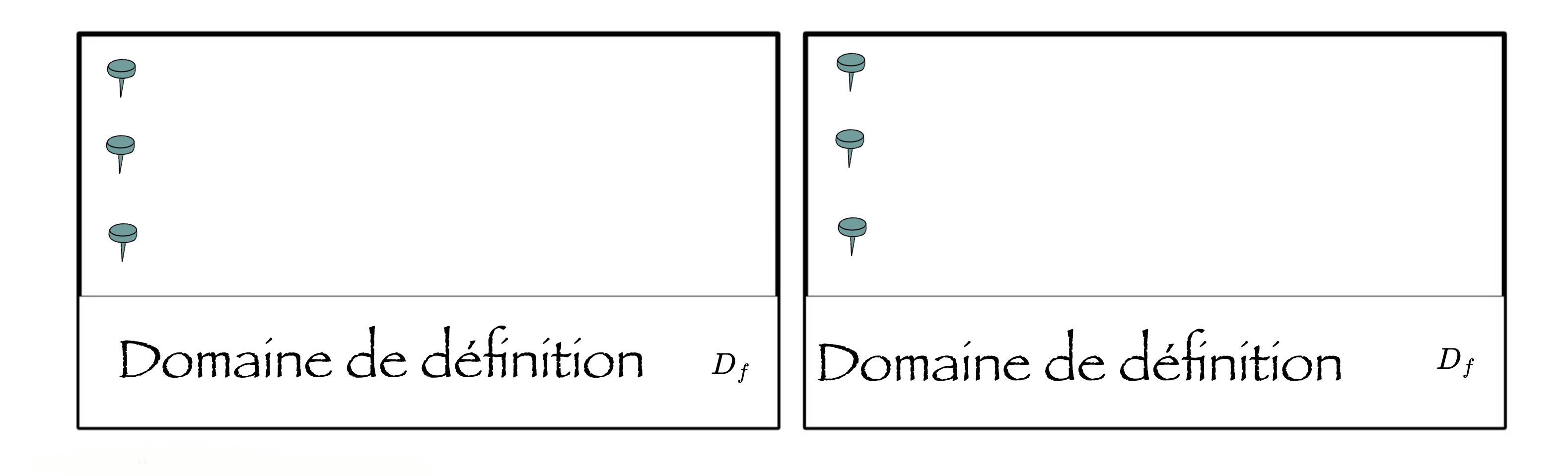
Étude de fonction rationnelle 3Ma1

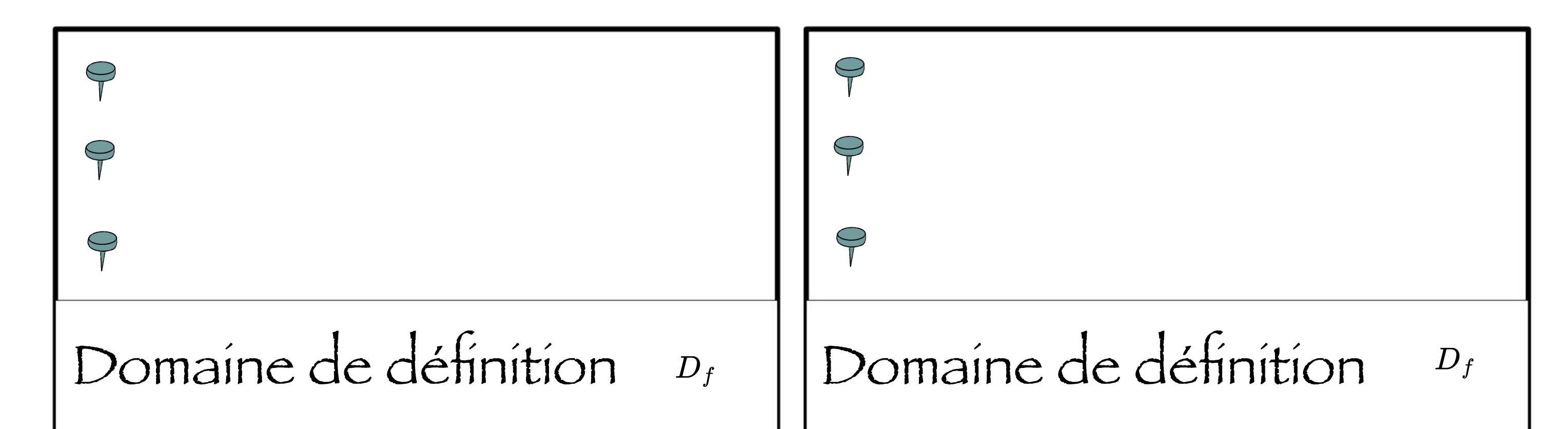
Étude de fonction rationnelle

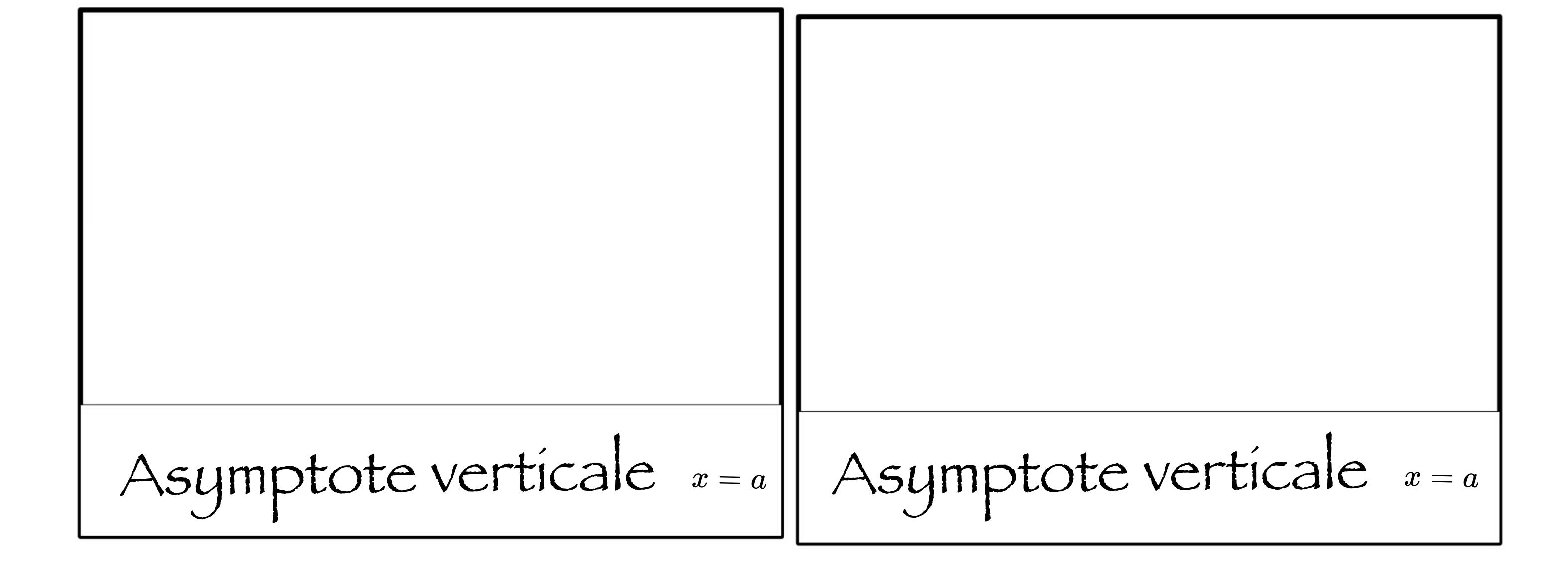
3Mal

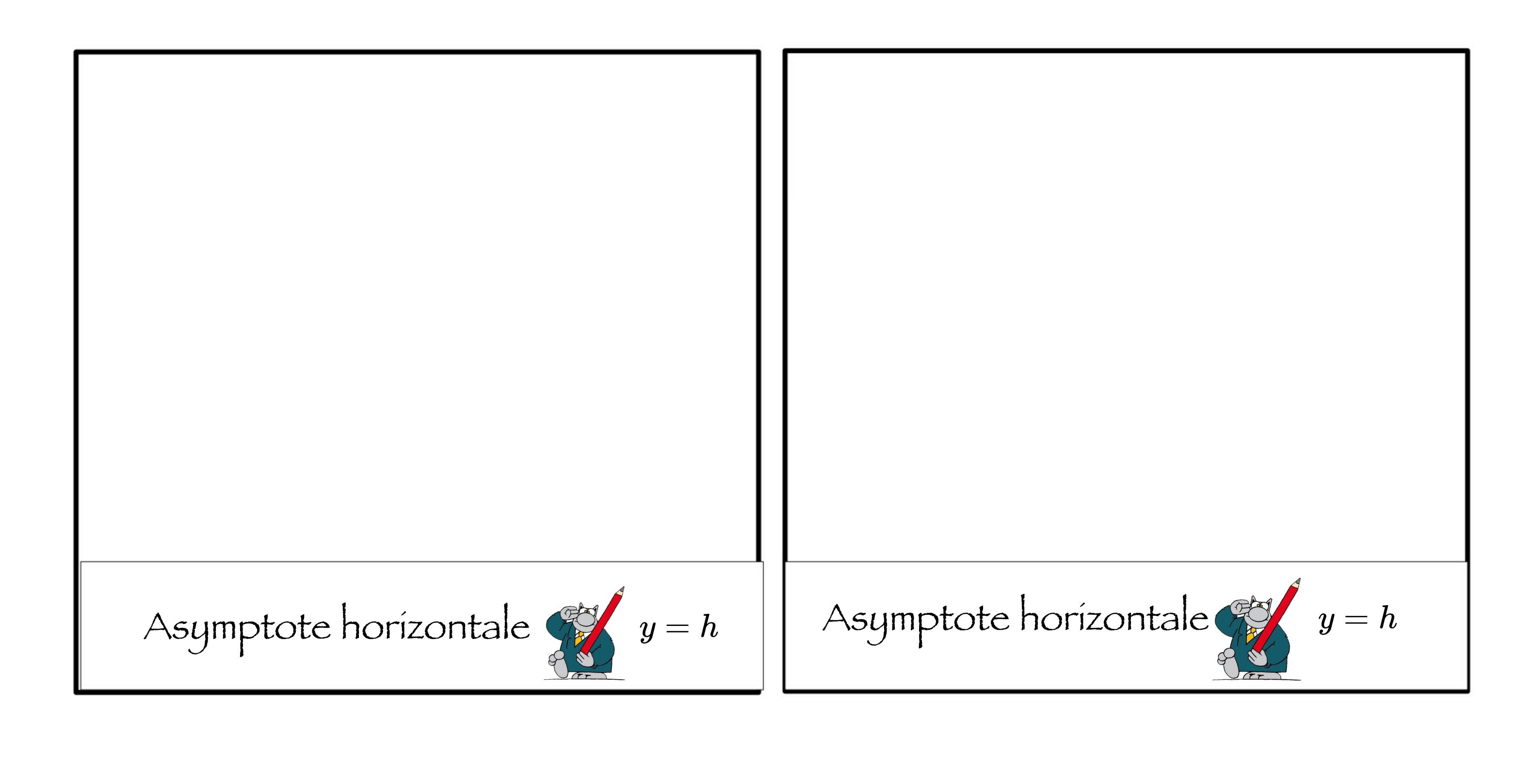
Étude de fonction rationnelle

3Ma1









La pente :
$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$

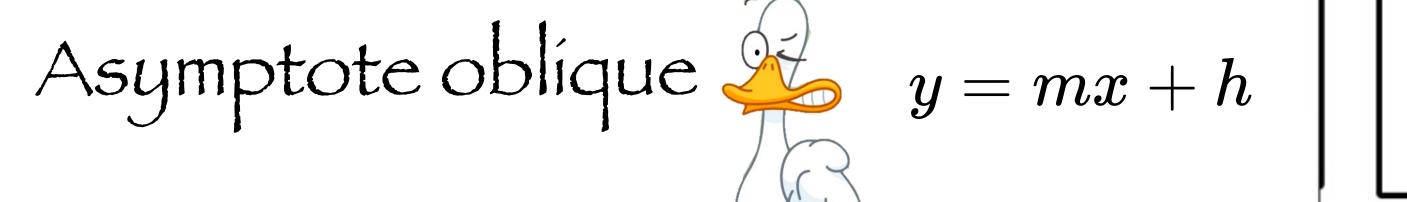
Si m = 0, l'asymptote est horizontale

L'ordonnée à l'origine :
$$h = \lim_{x \to \infty} (f(x) - mx)$$

$$h = \lim_{x o \infty} (f(x) - mx)$$

Comportement : Etudier les signes de $\delta(x) = f(x) - d(x)$

			0 +	
_	$\delta(x)$	_	0	+
•	f(x)	dessous	coupe	au-dessus
	$J(\omega)$	de l'AO.		de l'A-0.



La pente : $m = \lim_{x \to \infty} \frac{f(x)}{x}$ Si m = 0, l'asymptote est horizontale

L'ordonnée à l'origine : $h = \lim_{x \to \infty} (f(x) - mx)$

Comportement : Etudier les signes de $\delta(x) = f(x) - d(x)$

	$\delta(x)$		0	+
•	f(x)	dessous	coupe	au-dessus
	$J(\omega)$	de l'AO.		de l'A-0.

Asymptote oblique y = mx + h

Variations : Signes de f'(x)

f'(x)		0	+	0		0	_
f(x)	1	min	1	Max	1	p. c.	1

point critique

UUUUUUU

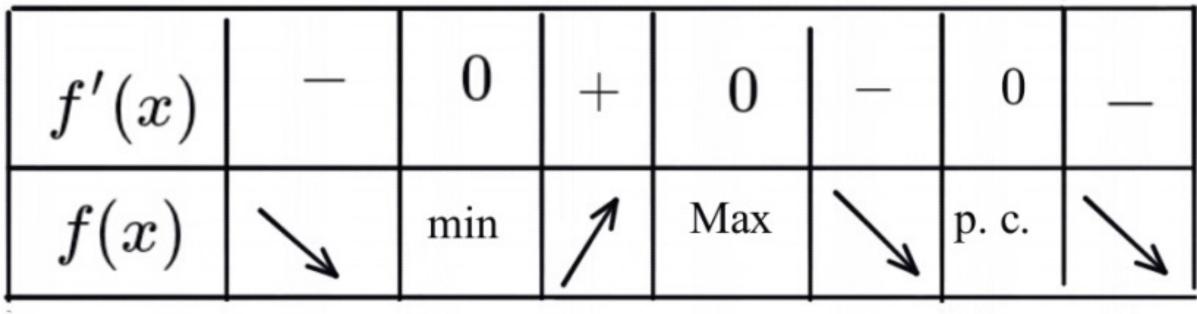
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

$$\left(g(f(x))
ight)'=g'(f(x))\cdot f'(x)$$

$$(x^n)^{'}=n\cdot x^{n-1}$$

Variations

Variations : Signes de f'(x)



1

point critique

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

$$\left(g(f(x))\right)^{'}=g'(f(x))\cdot f'(x)$$

$$(x^n)^{'}=n\cdot x^{n-1}$$

Variations

