

A(2;-1;0) $B(1;-1;3)$ Donner les équations paramétriques de la droite passant par A et B .	Déterminer les équations cartésiennes de la droite qui passe par $A(1;2;3)$ et a pour vecteur directeur $\vec{d} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$	Trouver une équation vectorielle de la droite qui passe par $A(-3;5;2)$ et est parallèle à \vec{j} .
Une droite est donnée par le système d'équations cartésiennes : $\frac{x-2}{3} = \frac{y-1}{7} = \frac{z-3}{2}$ Donner une équation vectorielle de la droite.	B(1;-1;3) C(5;-2;1) Donner les équations paramétriques de la droite passant par B et C .	Déterminer l'intersection de la droite passant par $A\left(-4;-2;\frac{16}{3}\right) \text{ et } B\left(3;\frac{3}{2};-4\right) \text{ et le plan } xOy$
Déterminer l'intersection de la droite d et le plan xOz . $d: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}, \lambda \in \mathbb{R}$	Donner une équation vectorielle de la droite $\frac{x+13}{2} = y = \frac{z-15}{-2}$	Donner une équation vectorielle de la droite $\frac{x-2}{13} = y - 1 = \frac{z+2}{15}$
Déterminer $d \cap xOz$. $\operatorname{avec} d:$ $\binom{x}{y} = \binom{2}{5} + k \binom{0}{5}, k \in \mathbb{R}$	Soit la droite passant par les points $A(5;-2;6)$ et $(2;4;15)$. Trouver l'intersection de la droite d_{AB} et le plan xOz .	Soit la droite $ \begin{cases} x=2-5k \\ d \colon \begin{cases} y=-1+k \ , k \in \mathbb{R} \\ z=3k \end{cases} $ Déterminer le point de d qui a la cote égale à 6.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	$\begin{cases} x = 1 \\ y + z - 5 = 0 \end{cases}$	daBi. 72 1 item
(0; 0; 0)	decida and mine	(*37), tell
$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 13 \\ 1 \\ 15 \end{pmatrix} $	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -13 \\ 0 \\ 15 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} $ $ \lambda \in \mathbb{R} $	(4; 0; -6)
(-8; 1; 6)	(4; 0; 9)	(2; 0; 6)

Associer le bon énoncé sur sa réponse. Lo	rrsque vous avez termír	ié, retournez toutes les cartes !
Référence des exercices : Géométrie vectorielle Série 2, 3ma1		

Illustration : pinkmaths.ch