3MA1

Analyse Série 9

Ne rien écrire sur l'énoncé! Rédigez vos raisonnements sur des feuilles à part!

Exercice 1:

Soit $f(x) = x^3 - 3x^2 - 9x + 7$ de \mathbb{R} vers \mathbb{R} .

- a) Sur quel domaine f est-elle croissante?
- b) Quels sont les extremums de f ? (Préciser s'il s'agit de minimums ou de maximums)

Exercice 2:

Le tableau ci-dessous est celui d'une fonction f qui est continue sur son domaine et qui admet une limite infinie en -1.

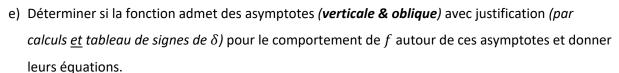
х		-2		-1		0		1		4	
f'(x)	+	+	+	/	_	/	+	0	-	0	+
f(x)		0		/		2		3		1	

- a) Compléter le tableau.
- b) Esquisser le graphe de f.
- c) Indiquer quels sont ses extremums.

Exercice 3:

Étude de la fonction $f(x) = \frac{x^2 + 2x + 1}{2x - 1}$

- a) Déterminer le domaine de la fonction f.
- b) Déterminer le(s) zéro(s) de la fonction f.
- c) Déterminer l'ordonnée à l'origine de la fonction f.
- d) Déterminer le tableau de signes de la fonction f.



- f) Calculer la dérivée de f, montrer que $f'(x) = \frac{2x^2 2x 4}{(2x 1)^2}$
- g) Déterminer le domaine de définition de f', les zéros de f' et le tableau de variation de f
- h) Représenter graphiquement la fonction à partir des points a) à g) au Crayon.

3MA1

Exercice 4:

Soit la fonction $f(x) = \frac{(x-2)^2}{x^2-4x}$

- a) Calculer la dérivée de f et montrer que $f'(x) = \frac{-8(x-2)}{x^2(x-4)^2}$
- b) Élaborer le tableau de variations de f et le tableau de signes de f
- c) Quelles sont les limites de f en 0^+ ? en 0^- ? en 4^+ ? en 4^- ?
- d) Calculer les limites de f en ∞
- e) A partir des résultats obtenus, tracer le graphique de f.

Exercice 5:

Déterminer le domaine de définition pour calculer toutes les asymptotes des fonctions suivantes :

a)
$$f(x) = \frac{3x^2 - 5x + 3}{x - 1}$$

b) $f(x) = \frac{(x^2 - 4)}{3x^2}$

c)
$$f(x) = \frac{x^{3}-1}{x}$$

d) $f(x) = \sqrt{x}$

b)
$$f(x) = \frac{(x^2-4)^2}{2x^2}$$

d)
$$f(x) = \sqrt{x}$$

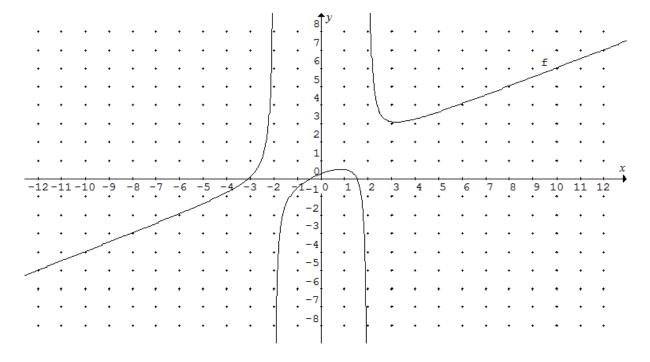
Exercice 6:

Étudier la fonction $f(x) = \frac{x^2 - 4x - 5}{2(x^2 - 4x + 3)}$ et la représenter graphiquement

 $(D_f, Z_f, f(0), D_{f'}, Z_{f'}, \text{ tableau de signes de } f, \text{ tableau de variations de } f, \text{AV, AO})$

Exercice 7:

Retrouver le tableau des variations et les asymptotes de la fonction f représentée ci-dessous



3MA1 AS9

Exercice 8:

Etudier uniquement la courbure (convexité et concavité) de la fonction $f(x) = \frac{1}{x^2+1}$

➢ Plus d'exercices ? CRM ANALYSE n°30 p.114 ex 77

Rappel: Une étude de fonction comprend les points suivants:

- a) Déterminer le domaine de la fonction f
- b) Déterminer le(s) zéro(s) de la fonction f
- c) Déterminer l'ordonnée à l'origine de la fonction f
- d) Déterminer le tableau de signes de la fonction f
- e) Déterminer si la fonction admet des asymptotes (*verticale & oblique*) avec justification (*par calculs* <u>et</u> tableau de signes de δ) pour le comportement de f autour de ces asymptotes et donner leurs équations.
- f) Calculer la dérivée de f, le domaine de définition de f' et les zéros de f'
- g) Déterminer le tableau de variation de f
- h) Représenter graphiquement la fonction à partir des points a) à g) au Crayon

Exercice 9:

Etudier complètement la fonction $f(x) = \frac{x}{x^2 - 4}$

Exercice 10:

Etudier complètement la fonction $f(x) = \frac{3x^2 - 4x}{2(x-1)^2}$

On donne : $f'(x) = \frac{2-x}{(x-1)^3}$ et $f''(x) = \frac{2x-5}{(x-1)^4}$ (à vérifier)

Plus d'exercices ? Monographie n°25 de la CRM

p. 113 ex 69

Étude de fonction: p.116 ex 85

JDM- Collège Voltaire 3

Solutions Analyse Série 9 :

Exercice 1:

$$f'(x) = 3(x-3)(x+1)$$

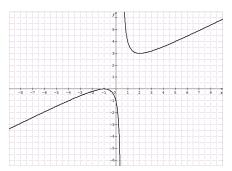
a) f est croissante sur le domaine : $]-\infty;-1] \cup [3;\infty[$

b) (-1; 12) est un Maximum de f et (3; -20) est un minimum de f

Exercice 3:

$$D_f = \mathbb{R} \setminus \left\{\frac{1}{2}\right\}, Z_f = \{-1\}, D_f, = \mathbb{R} \setminus \left\{\frac{1}{2}\right\}, Z_f, = \{-1; 2\},$$

x		-1		1/2		2	
f'(x)	+	0	1	/	-	0	+
f(x)	7	0 Max	٧	/	>	2 min	7



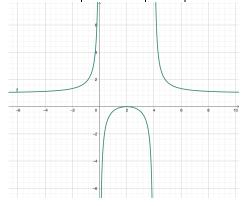
Exercice 4:

$$D_f = D_{f'} = \mathbb{R}^* \setminus \{4\}$$
 $Z_f = \{2\}, Z_{f'} = \{2\}$

$$\lim_{x \to 0^{-}} f(x) = +\infty, \ \lim_{x \to 0^{+}} f(x) = -\infty, \quad \lim_{x \to 4^{-}} f(x) = -\infty, \ \lim_{x \to 4^{+}} f(x) = +\infty$$

$$\lim_{x \to -\infty} f(x) = 1 \lim_{x \to +\infty} f(x) = 1$$

x		0		2		4	
-8(x-2)	+	+	+	0	-	ı	-
x^2	+	0	+	+	+	+	+
$(x-4)^2$	+	+	+	+	+	0	+
f'(x)		/	+	0	-	/	-
f(x)	7	AV	7	0 Max	7	AV	>



3MA1

Exercice 5:

a)
$$y = 3x - 2$$
 et $x = 1$ c) $x = 0$

c)
$$x = 0$$

b)
$$y = \frac{1}{3} \text{ et } x = 0$$

d) pas d'asymptote

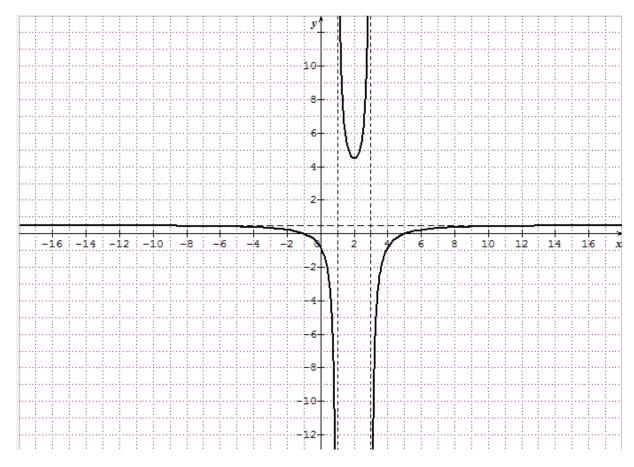
Exercice 6:

$$f(x) = \frac{(x-5)(x+1)}{2(x-3)(x-1)}$$

$$f'(x) = \frac{8(x-2)}{(x^2 - 4x + 3)^2}$$

x		-1		1		2		3		5	
f'(x)	1	-	-	/	1	0	+	/	+	+	+
f(x)	7	0	7	AV	7	4,5	7	AV	7	0	7
						min					

AH:
$$y = \frac{1}{2}$$
 AV: $x = 1$ et $x = 3$



Exercice 7:

X		- 3		-2		- 1/2		1		3/2		2		3	
f'(x)	+	+	+		+	+	+	0	_	_	_		_	0	+
f(x)	*	0	*	ΑV	*	0	*	½ Max	×	0	×	ΑV	×	3 Min	*

AO:
$$y = \frac{1}{2}x + 1$$

6

Exercice 8:

$$D_f=D_{f'}=D_{f''}=\mathbb{R}, Z_f=\emptyset, Z_{f''}=\left\{\pm\frac{\sqrt{3}}{3}\right\}$$

$$f'(x) = -\frac{2x}{(x^2+1)^2}, \ f''(x) = \frac{2(3x^2-1)}{(x-1)^3}$$

X		$-\frac{\sqrt{3}}{3}$		$\frac{\sqrt{3}}{3}$	
f "(x)	+	0	-	0	+
f(x)	C	3/4 PI	C	3/4 PI	C

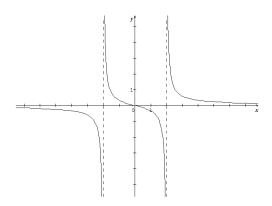
Exercice 9:

$f(x) = \frac{x}{x^2 - 4}$	$f'(x) = -\frac{x^2 + 4}{(x^2 - 4)^2}$	$f''(x) = \frac{2x(x^2 + 12)}{(x^2 - 4)^3}$
$D_f = \mathbb{R} \setminus \{\pm 2\}$	$D_{f'} = \mathbb{R} \setminus \{\pm 2\}$	$D_{f''} = \mathbb{R} \setminus \{\pm 2\}$
$Z_f = \{0\}$	$Z_{f'} = \emptyset$	$Z_{f''} = \{0\}$

AH:
$$y = 0$$
 AV: $x = -2$ et $x = 2$

X		-2		0		2	
f'(x)	_		1	1	_		_
f(x)	×	Ą	×	0	×	ΑV	×

X		-2		0		2	
f "(x)	-		+	0	-		+
f(x)	0		C	0 PI	0		C



Exercice 10:

x		0		1		4 3		2	
f '(x)	_	_	_		+	+	+	0	_
f(x)	`	0	_		_	0	1	2 Max	_

			I -	I	I .	I	A		5	I
X			0		1		3		2	
f "(:	x)	_	_	_		_	_	_	0	+
f(x	:)	0	0	0		0	0	0	35 18 PI	O

AV:
$$x = 1$$
 AH: $y = \frac{3}{2}$

JDM- Collège Voltaire

